gen3sis: the general engine for eco-evolutionary simulations on the origins of biodiversity

Author:

Hagen OskarORCID,Flück Benjamin,Fopp FabianORCID,Cabral Juliano S.ORCID,Hartig FlorianORCID,Pontarp MikaelORCID,Rangel Thiago F.ORCID,Pellissier LoïcORCID

Abstract

AbstractUnderstanding the origins of biodiversity has been an aspiration since the days of early naturalists. The immense complexity of ecological, evolutionary and spatial processes, however, has made this goal elusive to this day. Computer models serve progress in many scientific fields, but in the fields of macroecology and macroevolution, eco-evolutionary models are comparatively less developed. We present a general, spatially-explicit, eco-evolutionary engine with a modular implementation that enables the modelling of multiple macroecological and macroevolutionary processes and feedbacks across representative spatio-temporally dynamic landscapes. Modelled processes can include environmental filtering, biotic interactions, dispersal, speciation and evolution of ecological traits. Commonly observed biodiversity patterns, such as α, β and γ diversity, species ranges, ecological traits and phylogenies, emerge as simulations proceed. As a case study, we examined alternative hypotheses expected to have shaped the latitudinal diversity gradient (LDG) during the Earth’s Cenozoic era. We found that a carrying capacity linked with energy was the only model variant that could simultaneously produce a realistic LDG, species range size frequencies, and phylogenetic tree balance. The model engine is open source and available as an R-package, enabling future exploration of various landscapes and biological processes, while outputs can be linked with a variety of empirical biodiversity patterns. This work represents a step towards a numeric and mechanistic understanding of the physical and biological processes that shape Earth’s biodiversity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3