Deep Learning from Phylogenies for Diversification Analyses

Author:

Lambert SophiaORCID,Voznica JakubORCID,Morlon HélèneORCID

Abstract

ABSTRACTBirth-death models are widely used in combination with species phylogenies to study past diversification dynamics. Current inference approaches typically rely on likelihood-based methods. These methods are not generalizable, as a new likelihood formula must be established each time a new model is proposed; for some models such formula is not even tractable. Deep learning can bring solutions in such situations, as deep neural networks can be trained to learn the relation between simulations and parameter values as a regression problem. In this paper, we adapt a recently developed deep learning method from pathogen phylodynamics to the case of diversification inference, and we extend its applicability to the case of the inference of state-dependent diversification models from phylogenies associated with trait data. We demonstrate the accuracy and time efficiency of the approach for the time constant homogeneous birth-death model and the Binary-State Speciation and Extinction model. Finally, we illustrate the use of the proposed inference machinery by reanalyzing a phylogeny of primates and their associated ecological role as seed dispersers. Deep learning inference provides at least the same accuracy as likelihood-based inference while being faster by several orders of magnitude, offering a promising new inference approach for deployment of future models in the field.

Publisher

Cold Spring Harbor Laboratory

Reference97 articles.

1. Abadi M. , Agarwal A. , Barham P. , Brevdo E. , Chen Z. , Citro C. , Corrado G.S. , Davis A. , Dean J. , Devin M. , Ghemawat S. , Goodfellow I. , Harp A. , Irving G. , Isard M. , Jia Y. , Jozefowicz R. , Kaiser L. , Kudlur M. , Levenberg J. , Mane D. , Monga R. , Moore S. , Murray D. , Olah C. , Schuster M. , Shlens J. , Steiner B. , Sutskever I. , Talwar K. , Tucker P. , Vanhoucke V. , Vasudevan V. , Viegas F. , Vinyals O. , Warden P. , Wattenberg M. , Wicke M. , Yu Y. , Zheng X. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.

2. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates

3. Andermann T. , Antonelli A. , Barrett R.L. , Silvestro D. (2022). Estimating Alpha, Beta, and Gamma Diversity Through Deep Learning. Frontiers in Plant Science. 13.

4. Understanding the effect of competition during evolutionary radiations: an integrated model of phenotypic and species diversification

5. Neural networks enable efficient and accurate simulation-based inference of evolutionary parameters from adaptation dynamics;PLoS Biol,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3