Antigen-specific stimulation and expansion of CAR-T cells using membrane vesicles as target cell surrogates

Author:

Ukrainskaya V.M.,Rubtsov Y.P.,Pershin D.S.,Podoplelova N.A.,Terekhov S.S.,Kalinin R.S.,Yaroshevich I.A.,Sokolova A.I.,Bagrov D.V.,Kulakovskaya E.A.,Shipunova V.O.,Deyev S.M.,Maksimov E.G.,Markov O.V.,Oshchepkova A.L.,Zenkova M.A.,Xie J.,Gabibov A.G.,Maschan M.A.,Stepanov A.V.,Lerner. R.A.

Abstract

AbstractDevelopment of CAR-T therapy led to immediate success in the treatment of B cell leukemia and lymphoma. It also raised an opportunity to design new protocols to target solid tumors. Manufacturing of therapy-competent functional CAR-T cells needs robust protocols for ex vivo/in vitro expansion of modified T-cells. This step is challenging, especially if non-viral low efficiency delivery protocols are used to generate CAR-T cells. Modern protocols for CAR-T cell expansion are based on incubation with high doses of recombinant cytokines to support proliferation, non-specific stimulation with surface-bound antibodies to induce TCR cross-linking, or co-cultivation with antigen-expressing feeder cell lines. These approaches are imperfect since non-specific stimulation results in rapid outgrowth of CAR-negative T cells, and removal of feeder cells from mixed cultures necessitates additional purification steps. In an effort to develop a specific and improved protocol for CAR-T cell expansion, we took advantage of cell-derived membrane vesicles, and the simple structural demands of the CAR-antigen interaction. Our approach was to make antigenic microcytospheres from common cell lines stably expressing surface-bound CAR antigens (antigenic vesicles, AVs), and then use them for stimulation and expansion of CAR-T cells. We developed a rapid, simple, efficient, and inexpensive protocol to generate, stabilize and purify AVs. As proof-of-concept we tested the efficacy of our AV constructs on several CAR-antigen pairs. The data presented in this article clearly demonstrate that our protocol produced AVs with the capacity to induce stronger stimulation, proliferation and functional activity of CAR-T cells than is possible with existing protocols. We predict that this new methodology will significantly improve the ability to obtain improved populations of functional CAR-T cells for therapy.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3