Abstract
AbstractGlobally imperiled ecosystems often depend upon collection, propagation, and storage of seed material for use in restoration. However, during the restoration process demographic changes, population bottlenecks, and selection can alter the genetic composition of seed material, with potential impacts for restoration success. The evolutionary outcomes associated with these processes have been demonstrated using theoretical and experimental frameworks, but no studies to date have examined the impact these processes have had on the seed material maintained for conservation and restoration. In this study, we compare genomic variation across seed sources used in conservation and restoration for the perennial prairie plantHelianthus maximiliani, a key component of restorations across North American grasslands. We compare individuals sourced from contemporary wild populations,ex situconservation collections, commercially produced restoration material, and two populations selected for agronomic traits. Overall, we observed thatex situand contemporary wild populations exhibited a similar genomic composition, while four of five commercial populations and selected lines were differentiated from each other and other seed source populations. Genomic differences across seed sources could not be explained solely by isolation by distance nor directional selection. We did find evidence of sampling effects forex situcollections, which exhibited significantly increased coancestry relative to commercial populations, suggesting increased relatedness. Interestingly, commercially sourced seed appeared to maintain an increased number of rare alleles relative toex situand wild contemporary seed sources. However, while commercial seed populations were not genetically depauperate, the genomic distance between wild and commercially produced seed suggests differentiation in the genomic composition could impact restoration success. Our results point towards the importance of genetic monitoring of species used for conservation and restoration as they are expected to be influenced by the evolutionary processes that contribute to divergence during the restoration process.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献