Sequence determinants of human gene regulatory elements

Author:

Sahu BiswajyotiORCID,Hartonen Tuomo,Pihlajamaa Päivi,Wei Bei,Dave Kashyap,Zhu Fangjie,Kaasinen Eevi,Lidschreiber Katja,Lidschreiber Michael,Daub Carsten O.ORCID,Cramer Patrick,Kivioja Teemu,Taipale JussiORCID

Abstract

AbstractDNA determines where and when genes are expressed, but the full set of sequence determinants that control gene expression is not known. To obtain a global and unbiased view of the relative importance of different sequence determinants in gene expression, we measured transcriptional activity of DNA sequences that are in aggregate ∼100 times longer than the human genome in three different cell types. We show that enhancers can be classified to three main types: classical enhancers1, closed chromatin enhancers and chromatin-dependent enhancers, which act via different mechanisms and differ in motif content. Transcription factors (TFs) act generally in an additive manner with weak grammar, with classical enhancers increasing expression from promoters by a mechanism that does not involve specific TF-TF interactions. Few TFs are strongly active in a cell, with most activities similar between cell types. Chromatin-dependent enhancers are enriched in forkhead motifs, whereas classical enhancers contain motifs for TFs with strong transactivator domains such as ETS and bZIP; these motifs are also found at transcription start site (TSS)-proximal positions. However, some TFs, such as NRF1 only activate transcription when placed close to the TSS, and others such as YY1 display positional preference with respect to the TSS. TFs can thus be classified into four non-exclusive subtypes based on their transcriptional activity: chromatin opening, enhancing, promoting and TSS determining factors – consistent with the view that the binding motif is the only atomic unit of gene expression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3