Abstract
AbstractA GGGGCC repeat expansion in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS), a devastating motor neuron disease. In the neurons of ALS patients, dipeptide repeat proteins (DPRs) are produced from repeat-containing RNAs by an unconventional form of translation, and some of these proteins, especially those containing poly(glycine-arginine) and poly(proline-arginine), are toxic to neurons. Gemini of coiled bodies (GEMs) are nuclear structures that harbor survival of motor neuron (SMN) protein, and SMN is essential for the assembly of U-rich small nuclear ribonucleoproteins (snRNPs) that are central for splicing. We previously reported that GEMs are lost and that snRNP biogenesis is misregulated in the motor neurons of ALS patients. Here we show that DPRs interfere with GEM formation and proper SMN localization in HeLa cells and iPSC-derived motor neurons from an ALS patient with the C9ORF72 mutation. The accumulation of poly(glycine-arginine) markedly reduced the number of GEMs and caused the formation of aberrant cytoplasmic RNA granules that sequestered SMN. These findings indicate the functional impairment of SMN in motor neurons expressing DPRs and may provide a mechanism to explain the vulnerability of motor neurons of C9ORF72-ALS patients.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献