MRSD: a novel quantitative approach for assessing suitability of RNA-seq in the clinical investigation of mis-splicing in Mendelian disease

Author:

Rowlands Charlie F.ORCID,Taylor Algy,Rice Gillian,Whiffin NicolaORCID,Hall Hildegard NikkiORCID,Newman William G.ORCID,Black Graeme C.M.ORCID,O’Keefe Raymond T.ORCID,Hubbard SimonORCID,Douglas Andrew G.L.,Baralle DianaORCID,Briggs Tracy A.ORCID,Ellingford Jamie M.ORCID,

Abstract

AbstractBackgroundRNA-sequencing of patient biosamples is a promising approach to delineate the impact of genomic variants on splicing, but variable gene expression between tissues complicates selection of appropriate tissues. Relative expression level is often used as a metric to predict RNA-sequencing utility. Here, we describe a gene- and tissue-specific metric to inform the feasibility of RNA-sequencing, overcoming some issues with using expression values alone.ResultsWe derive a novel metric, Minimum Required Sequencing Depth (MRSD), for all genes across three human biosamples (whole blood, lymphoblastoid cell lines (LCLs) and skeletal muscle). MRSD estimates the depth of sequencing required from RNA-sequencing to achieve user-specified sequencing coverage of a gene, transcript or group of genes of interest. MRSD predicts levels of splice junction coverage with high precision (90.1-98.2%) and overcomes transcript region-specific sequencing biases. Applying MRSD scoring to established disease gene panels shows that LCLs are the optimum source of RNA, of the three investigated biosamples, for 69.3% of gene panels. Our approach demonstrates that up to 59.4% of variants of uncertain significance in ClinVar predicted to impact splicing could be functionally assayed by RNA-sequencing in at least one of the investigated biosamples.ConclusionsWe demonstrate the power of MRSD as a metric to inform choice of appropriate biosamples for the functional assessment of splicing aberrations. We apply MRSD in the context of Mendelian genetic disorders and illustrate its benefits over expression-based approaches. We anticipate that the integration of MRSD into clinical pipelines will improve variant interpretation and, ultimately, diagnostic yield.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3