Abstract
AbstractOnion is an important vegetable crop with an estimated genome size of 16Gb. We describe the de novo assembly and ab initio annotation of the genome of a doubled haploid onion line DHCU066619, which resulted in a final assembly of 14.9 Gb with a N50 of 461 Kb. Of this, 2.2 Gb was ordered into 8 pseudomolecules using five genetic linkage maps. The remainder of the genome is available in 89.8 K scaffolds. Only 72.4% of the genome could be identified as repetitive sequences and consist, to a large extent, of (retro) transposons. In addition, an estimated 20% of the putative (retro) transposons had accumulated a large number of mutations, hampering their identification, but facilitating their assembly. These elements are probably already quite old. The ab initio gene prediction indicated 540,925 putative gene models, which is far more than expected, possibly due to the presence of pseudogenes. Of these models, 86,073 showed similarity to published proteins (UNIPROT). No gene rich regions were found, genes are uniformly distributed over the genome. Analysis of synteny with A. sativum (garlic) showed collinearity but also major rearrangements between both species. This assembly is the first high-quality genome sequence available for the study of onion and will be a valuable resource for further research.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献