Inhibition of select actinobacteria by the organophosphate pesticide chlorpyrifos

Author:

McDonald Nathan D.,Love Courtney E.,Killens-Cade Rushyannah,Werth Jason,Gebert Matthew,Weber Carolyn F.,Nealon Christopher,Sweet Charles,Fierer NoahORCID,Gibbons Henry S.

Abstract

ABSTRACTOrganophosphorus compounds have an extensive history as both agricultural pesticides as well as chemical nerve agents. Decades of research have demonstrated numerous links between these chemicals and their direct and indirect effects on humans and other organisms. The inhibitory effects of organophosphate pesticides (OPPs) on metazoan physiology, are well-characterized; however, the effects of organophosphorus compounds on soil microbes - essential contributors to key agricultural processes - are poorly understood. Chlorpyrifos (CPF) is an OPP that is used globally for crop protection. Studies of CPF application to soils have shown transient effects on soil microbial communities with conflicting data. Here, we directly test the effect of CPF on a panel of 196 actinobacteria strains, examining the effects of CPF on their growth and in vitro phenotypes on solid media. Strains were grown and replica-plated onto media containing CPF or a vehicle control and grown at 28°C. CPF dramatically inhibited the growth of most strains and/or altered colony morphologies, with 13 strains completely inhibited by CPF. In disk diffusion assays with CPF, its degradation product 3,5,6-trichloropyridinol (TCP), malathion, parathion, monocrotophos and mevinphos, only CPF exhibited direct antimicrobial activity suggesting that the observed effects were due to CPF itself.IMPORTANCEChlorpyrifos is a globally used pesticide with documented neurological effects on non-target organisms in the environment. Finding that chlorpyrifos can inhibit the growth of some soil microbes in vitro may have implications for the composition, stability, and health of the soil microbiome. Due to the importance of soil microbes to numerous biogeochemical processes in agricultural systems, additional investigations into the non-target effects of CPF on soil microbes are clearly needed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3