Abstract
AbstractEvidence has accumulated that some genes originate directly from previously non-genic sequences, orde novo, rather than by the duplication or fusion of existing genes. However, howde novogenes emerge and eventually become functional is largely unknown. Here we perform the first study onde novogenes that uses transcriptomics data from eleven different yeast species, all grown identically in both rich media and in oxidative stress conditions. The genomes of these species are densely-packed with functional elements, leaving little room for the co-option of genomic sequences into new transcribed loci. Despite this, we find that at least 213 transcripts (~5%) have arisende novoin the past 20 million years of evolution of baker’s yeast-or approximately 10 new transcripts every million years. Nearly half of the total newly expressed sequences are generated from regions in which both DNA strands are used as templates for transcription, explaining the apparent contradiction between the limited ‘empty’ genomic space and high rate ofde novogene birth. In addition, we find that 40% of thesede novotranscripts are actively translated and that at least a fraction of the encoded proteins are likely to be under purifying selection. This study shows that even in very highly compact genomes,de novotranscripts are continuously generated and can give rise to new functional protein-coding genes.
Publisher
Cold Spring Harbor Laboratory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献