Amino Acid Requirements of the Chinese Hamster Ovary Cell Metabolism during Recombinant Protein Production

Author:

Traustason Bergthor

Abstract

SummaryMajority of biopharmaceutical drugs today are produced by Chinese hamster ovary (CHO) cells, which have been the standard industry host for the past decades. To produce and secrete a substantial amount of the target recombinant proteins the CHO cells must be provided with suitable growth conditions and provided with the necessary nutrients. Amino acids play a key role in this as the building blocks of proteins, playing important roles in a large number of metabolic pathways and being important sources of nitrogen as well as carbon under certain conditions. In this study exploratory analysis of the amino acid requirements of CHO cells was carried out using metabolic modelling approaches. Flux balance analysis was employed to evaluate the optimal distribution of fluxes in a genome-scale model of CHO cells to gain information on the cells’ metabolic response in silico.The results showed that providing non-essential amino acids (NEAAs) has a positive effect on CHO cell biomass production and that cysteine as well as tyrosine play a fundamental role in this. This implies that extracellular provision of NEAAs limits the extent of energy loss in amino acid biosynthetic pathways and renders additional reducing power available for other biological processes. Detailed analysis of the possible secretion and uptake of D-serine in the CHO model was also performed and its influence on the rest of the metabolism mapped out, which revealed results matching various existing literature. This is interesting since no mention of D-serine in regard to CHO cells was found in current literature, as well as the fact that this opens up the possibility of using the model for better understanding of certain disorders in higher up organisms that have been implicated with D-serine, such as motor neuron and cognitive degeneration. Finally, outcome from the model optimisation of different recombinant proteins demonstrated clearly how the difference in protein structure and size can influence the production outcome. These results show that systematic and model-based approaches have great potential for broad de novo exploration as well as being able to handle the cellular burden associated with the production of different types of recombinant protein.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3