Addressing amino acid‐derived inhibitory metabolites and enhancing CHO cell culture performance through DOE‐guided media modifications

Author:

Ladiwala Pranay1ORCID,Dhara Venkata Gayatri1,Jenkins Jackson1,Kuang Bingyu2,Hoang Duc2ORCID,Yoon Seongkyu2ORCID,Betenbaugh Michael J.1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA

2. Department of Chemical Engineering University of Massachusetts Lowell Lowell Massachusetts USA

Abstract

AbstractPreviously, we identified six inhibitory metabolites (IMs) accumulating in Chinese hamster ovary (CHO) cultures using AMBIC 1.0 community reference medium that negatively impacted culture performance. The goal of the current study was to modify the medium to control IM accumulation through design of experiments (DOE). Initial over‐supplementation of precursor amino acids (AAs) by 100% to 200% in the culture medium revealed positive correlations between initial AA concentrations and IM levels. A screening design identified 5 AA targets, Lys, Ile, Trp, Leu, Arg, as key contributors to IMs. Response surface design analysis was used to reduce initial AA levels between 13% and 33%, and these were then evaluated in batch and fed‐batch cultures. Lowering AAs in basal and feed medium and reducing feed rate from 10% to 5% reduced inhibitory metabolites HICA and NAP by up to 50%, MSA by 30%, and CMP by 15%. These reductions were accompanied by a 13% to 40% improvement in peak viable cell densities and 7% to 50% enhancement in IgG production in batch and fed‐batch processes, respectively. This study demonstrates the value of tuning specific AA levels in reference basal and feed media using statistical design methodologies to lower problematic IMs.

Funder

National Science Foundation

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3