Tropomyosin 3.5 protects F-actin networks required for tissue biomechanical properties

Author:

Cheng Catherine,Nowak Roberta B.,Amadeo Michael B.,Biswas Sondip K.,Lo Woo-Kuen,Fowler Velia M.ORCID

Abstract

AbstractTropomyosins (Tpms) stabilize F-actin and regulate interactions with other actin-binding proteins. The eye lens changes shape in order to fine focus light to transmit a clear image, and thus lens organ function is tied to its biomechanical properties, presenting an opportunity to study Tpm functions in tissue mechanics. The major mouse lens Tpm is Tpm3.5 (TM5NM5), a previously unstudied isoform. Decreased levels of Tpm3.5 lead to softer and less mechanically resilient lenses that are unable to resume their original shape after compression. While cell organization and morphology appear unaffected, Tmod1 dissociates from the membrane in Tpm3.5-deficient lens fiber cells resulting in reorganization of the spectrin-F-actin and α-actinin-F-actin networks at the membrane. These rearranged F-actin networks appear to be less able to support mechanical load and resilience leading to an overall change in tissue mechanical properties. This is the firstin vivoevidence that Tpm is essential for cell biomechanical stability in a load-bearing non-muscle tissue and indicates that Tpm3.5 protects mechanically stable, load-bearing F-actinin vivo.SummaryTropomyosin 3.5 stabilizes F-actin in eye lens fiber cells and promotes normal tissue biomechanical properties. Tpm3.5 deficiency leads to F-actin network rearrangements and decreased lens stiffness and resilience.

Publisher

Cold Spring Harbor Laboratory

Reference117 articles.

1. Structural Evidence of Human Nuclear Fiber Compaction as a Function of Ageing and Cataractogenesis

2. Alberts, B. Molecular biology of the cell.

3. Alcalá, J. and Maisel, H. (1985). Biochemistry of Lens Plasma Membrane and Cytoskeleton in The Ocular lens: structure, function, and pathology. New York: Dekker.

4. Tropomyosin and Profilin Cooperate to Promote Formin-Mediated Actin Nucleation and Drive Yeast Actin Cable Assembly

5. Characterization of a Mutation in the Lens-Specific CP49 in the 129 Strain of Mouse

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3