Author:
Wu Yong Y.,Sato Hirokazu,Huang Hongjun,Culler Stephanie J.,Khandurina Julia,Nagarajan Harish,Yang Tae Hoon,Van Dien Stephen,Murray Richard M.
Abstract
AbstractCurrent methods for assembling biosynthetic pathways in microorganisms require a process of repeated trial and error and have long design-build-test cycles. We describe the use of a cell-free transcription-translation (TX-TL) system as a biomolecular breadboard for the rapid engineering of the 1,4-butanediol (BDO) pathway. We demonstrate the reliability of TX-TL as a platform for engineering biological systems by undertaking a careful characterization of its transcription and translation capabilities and provide a detailed analysis of its metabolic output. Using TX-TL to survey the design space of the BDO pathway enables rapid tuning of pathway enzyme expression levels for improved product yield. Leveraging TX-TL to screen enzyme variants for improved catalytic activity accelerates design iterations that can be directly applied to in vivo strain development.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献