Cell-free prototyping of limonene biosynthesis using cell-free protein synthesis

Author:

Dudley Quentin M.ORCID,Karim Ashty S.ORCID,Nash Connor J.,Jewett Michael C.ORCID

Abstract

AbstractMetabolic engineering of microorganisms to produce sustainable chemicals has emerged as an important part of the global bioeconomy. Unfortunately, efforts to design and engineer microbial cell factories are challenging because design-built-test cycles, iterations of re-engineering organisms to test and optimize new sets of enzymes, are slow. To alleviate this challenge, we demonstrate a cell-free approach termedin vitroPrototyping and Rapid Optimization of Biosynthetic Enzymes (or iPROBE). In iPROBE, a large number of pathway combinations can be rapidly built and optimized. The key idea is to use cell-free protein synthesis (CFPS) to manufacture pathway enzymes in separate reactions that are then mixed to modularly assemble multiple, distinct biosynthetic pathways. As a model, we apply our approach to the 9-step heterologous enzyme pathway to limonene in extracts fromEscherichia coli. In iterative cycles of design, we studied the impact of 54 enzyme homologs, multiple enzyme levels, and cofactor concentrations on pathway performance. In total, we screened over 150 unique sets of enzymes in 580 unique pathway conditions to increase limonene production in 24 hours from 0.2 to 4.5 mM (23 to 610 mg/L). Finally, to demonstrate the modularity of this pathway, we also synthesized the biofuel precursors pinene and bisabolene. We anticipate that iPROBE will accelerate design-build-test cycles for metabolic engineering, enabling data-driven multiplexed cell-free methods for testing large combinations of biosynthetic enzymes to inform cellular design.TOC FigureHighlightsApplied the iPROBE framework to build the nine-enzyme pathway to produce limoneneAssessed the impact of cofactors and 54 enzyme homologs on cell-free enzyme performanceIteratively optimized the cell-free production of limonene by exploring more than 580 unique reactionsExtended pathway to biofuel precursors pinene and bisabolene

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering;Metabolic engineering,2015

2. Developing commercial production of semi-synthetic artemisinin, and of β-Farnesene, an Isoprenoid Produced by Fermentation of Brazilian Sugar;Journal of the Brazilian Chemical Society,2016

3. Berry, A. , Huembelin, M. , Lopez-Ulibarri, R. , Production of Coenzyme Q-10. Vol. US20090226986 A1, 2009.

4. Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium

5. Synthetic non-oxidative glycolysis enables complete carbon conservation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3