Intersection of motor volumes predicts the outcome of ambush predation of larval zebrafish

Author:

Bhattacharyya Kiran,McLean David L.,MacIver Malcolm A.ORCID

Abstract

AbstractThe escape maneuvers of animals are key determinants of their survival. Consequently these maneuvers are under intense selection pressure. Current work indicates that a number of escape maneuver parameters contribute to survival including response latency, escape speed, and direction. This work has found that the relative importance of these parameters is context dependent, suggesting that interactions between escape maneuver parameters and the predatory context together determine the likelihood of escape success. However, it is unclear how escape maneuver parameters interact to contribute to escape success across different predatory contexts. To clarify these issues, we investigated the determinants of successful escape maneuvers by analyzing the responses of larval zebrafish to the attacks of dragonfly nymphs. We found that the strongest predictor of the outcome was the time needed for the nymph to reach the fish’s initial position at the onset of the attack, measured from the time that the fish initiates its escape response. We show how this result is related to the intersection of the swept volume of the nymph’s grasping organs with the volume containing all possible escape trajectories of the fish. By analyzing the intersection of these volumes, we compute the survival benefit of recruiting the Mauthner cell, a neuron in anamniotes devoted to producing escapes. We discuss how escape maneuver parameters interact in determining escape response. The intersection of motor volume approach provides a framework that unifies the influence of many escape maneuver parameters on the likelihood of survival.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3