On the equivalence between agent-based and continuum models for cell population modeling. Application to glioblastoma evolution in microfluidic devices

Author:

Arroyo-Vázquez Raquel B.,Pérez-Aliacar Marina,Ayensa-Jiménez Jacobo,Doblaré Manuel

Abstract

AbstractMathematical models are invaluable tools for understanding the mechanisms and interactions that control the behavior of complex systems. Modeling a problem as cancer evolution includes many coupled phenomena being therefore impossible to obtain sufficient experimental results to fully evaluate all possible conditions. In this work, we focus on Agent-Based Models (ABMs), as these models allow to obtain more complete and interpretable information at the individual level than other types ofin silicomodels. However, ABMs, need many parameters, requiring more information at the cellular and environmental levels to be calibrated. To overcome this problem we propose a complementary approach to traditional calibration methods. We used existent continuum models able to reproduce experimental data, validated and with fitted parameters, to establish relationships between parameters of both, continuum and agent-based models, to simplify and improve the process of adjusting the parameters of the ABM. With this approach, it is possible to bridge the gap between both kinds of models, allowing to work with them simultaneously and take advantage of the benefits of each of them.To illustrate this methodology, the evolution of glioblastoma (GB) is modeled as an example of application. The resulting ABM obtains very similar results to those previously obtained with the continuum model, replicating the main histopathological features (the formation of necrotic cores and pseudopalisades) appearing in several different in vitro experiments in microfluidic devices, as we previously obtained with continuum models. However, ABMs have additional advantages: since they also incorporates the inherent random effects present in Biology, providing a more natural explanation and a deeper understanding of biological processes. Moreover, additional relevant phenomena can be easily incorporated, such as the mechanical interaction between cells or with the environment, angiogenic processes and cell concentrations far from the continuum requirement as happens, for intance, with immune cells.

Publisher

Cold Spring Harbor Laboratory

Reference88 articles.

1. Who: Global cancer burden growing, amidst mounting need for services. https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing-amidst-mounting-need-for-services, 2024. Accessed: 25/03/2024.

2. Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment

3. Microfluidic cell culture

4. Microfluidic cell culture systems for drug research

5. Microfluidics meets 3d cancer cell migration;Trends in Cancer,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3