CRISPR-Cas9 target-strand nicking provides phage resistance by inhibiting replication

Author:

Nguyen Giang T.ORCID,Schelling Michael A.ORCID,Sashital Dipali G.ORCID

Abstract

AbstractCas endonucleases, like Cas9 and Cas12a, are RNA-guided immune effectors that provide bacterial defense against bacteriophages. Cas endonucleases rely on divalent metal ions for their enzymatic activities and to facilitate conformational changes that are required for specific recognition and cleavage of target DNA. While Cas endonucleases typically produce double-strand breaks (DSBs) in DNA targets, reduced, physiologically relevant Mg2+concentrations and target mismatches can result in incomplete second-strand cleavage, resulting in the production of a nicked DNA. It remains poorly understood whether nicking by Cas endonucleases is sufficient to provide protection against phage. To address this, we tested phage protection by Cas9 nickases, in which only one of two nuclease domains is catalytically active. By testing a large panel of guide RNAs, we find that target strand nicking can be sufficient to provide immunity, while non-target nicking does not provide any additional protection beyond Cas9 binding. Target-strand nicking inhibits phage replication and can reduce the susceptibility of Cas9 to viral escape when targeting non-essential regions of the genome. Cleavage of the non- target strand by the RuvC domain is strongly impaired at low Mg2+concentrations. As a result, fluctuations in the concentration of other biomolecules that can compete for binding of free Mg2+strongly influences the ability of Cas9 to form a DSB at targeted sites. Overall, our results suggest that Cas9 may only nick DNA during CRISPR-mediated immunity, especially under conditions of low Mg2+availability in cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3