Epigenetic adaptation prolongs photoreceptor survival during retinal degeneration

Author:

Dharmat RachayataORCID,Kim Sangbae,Liu Hehe,Fu Shangyi,Li Yumei,Chen RuiORCID

Abstract

AbstractNeural degenerative diseases often display a progressive loss of cells as a stretched exponential distribution. The mechanisms underlying the survival of a subset of genetically identical cells in a population beyond what is expected by chance alone remains unknown. To gain mechanistic insights underlying prolonged cellular survival, we used Spata7 mutant mice as a model and performed single-cell transcriptomic profiling of retinal tissue along the time course of photoreceptor degeneration. Intriguingly, rod cells that survive beyond the initial rapid cell apoptosis phase progressively acquire a distinct transcriptome profile. In these rod cells, expression of photoreceptor-specific phototransduction pathway genes is downregulated while expression of other retinal cell type-specific marker genes is upregulated. These transcriptomic changes are achieved by modulation of the epigenome and changes of the chromatin state at these loci, as indicated by immunofluorescence staining and single-cell ATAC-seq. Consistent with this model, when induction of the repressive epigenetic state is blocked by in vivo histone deacetylase inhibition, all photoreceptors in the mutant retina undergo rapid degeneration, strongly curtailing the stretched exponential distribution. Our study reveals an intrinsic mechanism by which neural cells progressively adapt to genetic stress to achieve prolonged survival through epigenomic regulation and chromatin state modulation.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3