Building the mega single-cell transcriptome ocular meta-atlas

Author:

Swamy Vinay S1,Fufa Temesgen D2ORCID,Hufnagel Robert B2,McGaughey David M1ORCID

Affiliation:

1. Bioinformatics Group, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, 20892, Bethesda, Maryland, USA

2. Medical Genetics and Ophthalmic Genomics Unit, National Eye Institute, National Institutes of Health, 20892, Bethesda, Maryland, USA

Abstract

Abstract Background: The development of highly scalable single-cell transcriptome technology has resulted in the creation of thousands of datasets, >30 in the retina alone. Analyzing the transcriptomes between different projects is highly desirable because this would allow for better assessment of which biological effects are consistent across independent studies. However it is difficult to compare and contrast data across different projects because there are substantial batch effects from computational processing, single-cell technology utilized, and the natural biological variation. While many single-cell transcriptome-specific batch correction methods purport to remove the technical noise, it is difficult to ascertain which method functions best. Results: We developed a lightweight R package (scPOP, single-cell Pick Optimal Parameters) that brings in batch integration methods and uses a simple heuristic to balance batch merging and cell type/cluster purity. We use this package along with a Snakefile-based workflow system to demonstrate how to optimally merge 766,615 cells from 33 retina datsets and 3 species to create a massive ocular single-cell transcriptome meta-atlas. Conclusions: This provides a model for how to efficiently create meta-atlases for tissues and cells of interest.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Health Informatics

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3