Stochastic competitive exclusion leads to a cascade of species extinctions

Author:

Capitán José A,Cuenda Sara,Alonso David

Abstract

AbstractCommunity ecology has traditionally relied on the competitive exclusion principle, a piece of common wisdom in conceptual frameworks developed to describe species assemblages. Key concepts in community ecology, such as limiting similarity and niche partitioning, are based on competitive exclusion. However, this classical paradigm in ecology relies on implications derived from simple, deterministic models. Here we show how the predictions of a symmetric, deterministic model about the way extinctions proceed can be utterly different from the results derived from the same model when ecological drift (demographic stochasticity) is explicitly considered. Using analytical approximations to the steady-state conditional probabilities for assemblages with two and three species, we demonstrate that stochastic competitive exclusion leads to a cascade of extinctions, whereas the symmetric, deterministic model predicts a multiple collapse of species. To test the robustness of our results, we have studied the effect of environmental stochasticity and relaxed the species symmetry assumption. Our conclusions highlight the crucial role of stochasticity when deriving reliable theoretical predictions for species community assembly.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. Stochastic amplification in epidemics;J. Roy. Soc London Interface,2007

2. The implicit assumption of symmetry and the species abundance distribution;Ecol. Let,2008

3. Stochastic formulation of ecological models and their applications

4. Space, persistence, and dynamics of measles epidemics;Proc. R. Soc. Lond. B,1995

5. Patchiness and demographic noise in three ecological examples;J. Stat. Phys.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3