Stochastic amplification in epidemics

Author:

Alonso David1,McKane Alan J2,Pascual Mercedes1

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Michigan830 North University Avenue, Ann Arbor, MI 48109-1048, USA

2. Theory Group, School of Physics and Astronomy, University of ManchesterManchester M13 9PL, UK

Abstract

The role of stochasticity and its interplay with nonlinearity are central current issues in studies of the complex population patterns observed in nature, including the pronounced oscillations of wildlife and infectious diseases. The dynamics of childhood diseases have provided influential case studies to develop and test mathematical models with practical application to epidemiology, but are also of general relevance to the central question of whether simple nonlinear systems can explain and predict the complex temporal and spatial patterns observed in nature outside laboratory conditions. Here, we present a stochastic theory for the major dynamical transitions in epidemics from regular to irregular cycles, which relies on the discrete nature of disease transmission and low spatial coupling. The full spectrum of stochastic fluctuations is derived analytically to show how the amplification of noise varies across these transitions. The changes in noise amplification and coherence appear robust to seasonal forcing, questioning the role of seasonality and its interplay with deterministic components of epidemiological models. Childhood diseases are shown to fall into regions of parameter space of high noise amplification. This type of ‘endogenous’ stochastic resonance may be relevant to population oscillations in nonlinear ecological systems in general.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference32 articles.

1. Measles periodicity and community size;Bartlett M.S;J. R. Stat. Soc. A,1957

2. Interepidemic intervals in forced and unforced SEIR models;Bauch C.T;Fields Inst. Commun,2003

3. Transients and attractors in epidemics

4. Dynamics of Measles Epidemics: Estimating Scaling of Transmission Rates Using a Time Series SIR Model

5. Impact of vaccination on the spatial correlation and persistence of measles dynamics.

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3