Author:
Kuang Xiaolin,Guo Yaping,Zhang Zhengyue,Hu Xiangdong,Han Xuebing,Ouyang Yidan,Xiao Difan,Li Qian,Wang Hanyu,Li Xi,Chen Qiang,Ma Menggen
Abstract
AbstractDuring biofuels fermentation from pretreated lignocellulosic biomass, the strong toxicity of the lignocellulose hydrolysate is resulted from the synergistic effect of multiple lignocellulosic inhibitors, which far exceeds the sum of effects caused by every single inhibitor. Meanwhile, the synergistic effect is unclear and the underlying response mechanism of the industrial yeast towards the actual pretreated lignocellulose hydrolysate is still under exploration. Here, we employed an industrialS. cerevisiaefor the transcriptomic analysis in two time points (early and late) of the lag phase under the corn stover hydrolysate stress. As investigation, the corn stover hydrolysate caused the accumulation of reactive oxygen species (ROS), damages of mitochondrial membrane and endoplasmic reticulum (ER) membrane in the industrialS. cerevisiaeYBA_08 during the lag phase, especially these negative effects were more significant at the early lag phase. Based on the transcriptome profile, the industrialS. cerevisiaeYBA_08 might recruit stress-related transcription factors (MSN4,STE12,SFL1,CIN5,COM2,MIG3, etc.) through the mitogen-activated protein kinase (MAPK)-signaling pathway to induce a transient G1/G2 arrest, and to activate defense bioprocesses like protectants metabolism, sulfur metabolism, glutaredoxin system, thioredoxin system, heat shock proteins chaperone and oxidoreductase detoxification, resisting those compounded stresses including oxidative stress, osmotic stress and structural stress. Surprisingly, this defense system might be accompanied with the transient repression of several bioprocesses like fatty acid metabolism, purinede novobiosynthesis and ergosterol biosynthesis.ImportanceThis research systematically demonstrated the lag phase response of an industrial yeast to the lignocellulosic hydrolysate in transcriptional level, providing a molecular fundament for understanding the synergistic effect of various lignocellulosic inhibitors and the regulatory mechanism of tolerance for industrial yeasts under this stress.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献