A global barley panel revealing genomic signatures of breeding in modern cultivars

Author:

Hill Camilla BeateORCID,Angessa Tefera Tolera,Zhang Xiao-Qi,Chen Kefei,Zhou Gaofeng,Tan CongORCID,Wang Penghao,Westcott Sharon,Li ChengdaoORCID

Abstract

AbstractThe future of plant cultivar improvement lies in the evaluation of genetic resources from currently available germplasm. Recent efforts in plant breeding have been aimed at developing new and improved varieties from poorly adapted crops to suit local environments. However, the impact of these breeding efforts is poorly understood. Here, we assess the contributions of both historical and recent breeding efforts to local adaptation and crop improvement in a global barley panel by analysing the distribution of genetic variants with respect to geographic region or historical breeding category. By tracing the impact breeding had on the genetic diversity of barley released in Australia, where the history of barley production is relatively young, we identify 69 candidate regions within 922 genes that were under selection pressure. We also show that modern Australian barley varieties exhibit 12% higher genetic diversity than historical cultivars. Finally, field-trialling and phenotyping for agriculturally relevant traits across a diverse range of Australian environments suggests that genomic regions under strong breeding selection and their candidate genes are closely associated with key agronomic traits. In conclusion, our combined dataset and germplasm collection provide a rich source of genetic diversity that can be applied to understanding and improving environmental adaptation and enhanced yields.Author summaryToday’s gene pool of crop genetic diversity has been shaped during domestication and more recently by breeding. Genetic diversity is vital for crop species to be able to adapt to changing environments. There is concern that recent breeding efforts have eroded the genetic diversity of many domesticated crops including barley. The present study assembled a global panel of barley genotypes with a focus on historical and modern Australian varieties.Genome-wide data was used to detect genes that are thought to have been under selection during crop breeding in Australian barley. The results demonstrate that despite being more extensively bred, modern Australian barley varieties exhibit higher genetic diversity than historical cultivars, countering the common perception that intensive breeding leads to genetic erosion of adaptive diversity in modern cultivars. In addition, some loci (particularly those related to phenology) were subject to selection during the introduction of other barley varieties to Australia – these genes might continue to be important targets in breeding efforts in the face of changing climatic conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3