Novel design of imputation-enabled SNP arrays for breeding and research applications supporting multi-species hybridisation

Author:

Keeble-Gagnère GORCID,Pasam RORCID,Forrest KL,Wong DORCID,Robinson H,Godoy J,Rattey A,Moody D,Mullan D,Walmsley T,Daetwyler HDORCID,Tibbits JORCID,Hayden MJORCID

Abstract

AbstractArray-based SNP genotyping platforms have low genotype error and missing data rates compared to genotyping-by-sequencing technologies. However, design decisions used to create array-based SNP genotyping assays for both research and breeding applications are critical to their success. We describe a novel approach applicable to any animal or plant species for the design of cost-effective imputation-enabled SNP genotyping arrays with broad utility and demonstrate its application through the development of the Infinium Wheat Barley 40K SNP array. We show the approach delivers high-quality and high-resolution data for wheat and barley, including when samples are jointly hybridised. The new array aims to maximally capture haplotypic diversity in globally diverse wheat and barley germplasm while minimising ascertainment bias. Comprising mostly biallelic markers designed to be species-specific and single-copy, it permits highly accurate imputation in diverse germplasm to improve statistical power for GWAS and genomic selection. The SNP content captures tetraploid wheat (A- and B-genome) and Ae. tauschii (D-genome) diversity and delineates synthetic and tetraploid wheat from other wheats, as well as tetraploid species and subgroups. The content includes SNP tagging key trait loci in wheat and barley and that directly connect to other genotyping platforms and legacy datasets. The utility of the array is enhanced through the web-based tool Pretzel (https://plantinformatics.io/) which enables the array’s content to be visualised and interrogated interactively in the context of numerous genetic and genomic resources to more seamlessly connect research and breeding. The array is available for use by the international wheat and barley community.Short summaryDesigning SNP genotyping arrays for closely related species with broad applicability in both research and breeding is challenging. Here we describe a novel generic approach to select SNP content for such arrays and demonstrate its utility in wheat and barley to: capture haplotypic diversity while minimising ascertainment bias;accurately impute to high SNP density in diverse germplasm;generate high-quality high-resolution genotypic data; andjointly hybridise samples to the same bead chip array.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3