TMAO, a seafood-derived molecule, produces diuresis and reduces mortality in heart failure rats

Author:

Gawrys-Kopczynska Marta,Konop Marek,Maksymiuk Klaudia,Kraszewska Katarzyna,Derzsi Ladislav,Sozański Krzysztof,Holyst Robert,Pilz Marta,Samborowska Emilia,Dobrowolski Leszek,Jaworska Kinga,Mogilnicka Izabella,Ufnal Marcin

Abstract

ABSTRACTBackgroundThere is an ongoing debate whether trimethylamine-oxide (TMAO), a molecule present in seafood and a derivate of microbiota metabolism, is beneficial or harmful for the circulatory system. Interestingly, deep-water animals accumulate TMAO that protects proteins such as lactate dehydrogenase (LDH) against high hydrostatic pressure. We hypothesized that TMAO may benefit the circulatory system by protecting cardiac LDH exposed to hydrostatic stress (HS) produced by contracting heart.Methods and ResultsMale, 6-week-old, Sprague-Dawley (SD, n=40) and Spontaneously-Hypertensive-Heart-Failure (SHHF n=18) rats were divided into either Water or TMAO oral treatment. After 56 weeks, half of Water and TMAO SD rats were given isoprenaline (ISO) to produce catecholamine stress. In vitro, LDH with or without TMAO was exposed to HS (changes in pressure 0-250mmHg x 280min−1) and was evaluated using fluorescence correlation spectroscopy. After 58 weeks of the treatment survival was 100% in SD-Water, SD-TMAO, ISO-TMAO and 90% in ISO-Water. In SHHF-Water survival was 66% vs 100% in SHHF-TMAO. In general, TMAO-treated rats showed higher diuresis and natriuresis. In comparison to SHHF-Water, SHHF-TMAO showed significantly lower diastolic arterial blood pressure, plasma NT-proBNP and expression of angiotensinogen and AT1 receptors in the heart. In separate experiments, intravenous TMAO but not vehicle or urea significantly increased diuresis in SD. In vitro, exposure of LDH to HS with or without TMAO did not affect the protein structure.ConclusionsTMAO reduces mortality in SHHF rats that is associated with diuretic, natriuretic and hypotensive effects. HS produced by the contracting heart is neutral for cardiac LDH structure.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3