Quantifying and contextualizing the impact of bioRxiv preprints through automated social media audience segmentation

Author:

Carlson JedidiahORCID,Harris KelleyORCID

Abstract

AbstractEngagement with scientific manuscripts is frequently facilitated by Twitter and other social media platforms. As such, the demographics of a paper’s social media audience provide a wealth of information about how scholarly research is transmitted, consumed, and interpreted by online communities. By paying attention to public perceptions of their publications, scientists can learn whether their research is stimulating positive scholarly and public thought. They can also become aware of potentially negative patterns of interest from groups that misinterpret their work in harmful ways, either willfully or unintentionally, and devise strategies for altering their messaging to mitigate these impacts. In this study, we collected 331,696 Twitter posts referencing 1,800 highly tweeted bioRxiv preprints and leveraged topic modeling to infer the characteristics of various communities engaging with each preprint on Twitter. We agnostically learned the characteristics of these audience sectors from keywords each user’s followers provide in their Twitter biographies. We estimate that 96% of the preprints analyzed are dominated by academic audiences on Twitter, suggesting that social media attention does not always correspond to greater public exposure. We further demonstrate how our audience segmentation method can quantify the level of interest from non-specialist audience sectors such as mental health advocates, dog lovers, video game developers, vegans, bitcoin investors, conspiracy theorists, journalists, religious groups, and political constituencies. Surprisingly, we also found that 10% of the highly tweeted preprints analyzed have sizable (>5%) audience sectors that are associated with right-wing white nationalist communities. Although none of these preprints intentionally espouse any right-wing extremist messages, cases exist where extremist appropriation comprises more than 50% of the tweets referencing a given preprint. These results present unique opportunities for improving and contextualizing research evaluation as well as shedding light on the unavoidable challenges of scientific discourse afforded by social media.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3