Abstract
ABSTRACTThe choroid plexus (ChP) is a secretory tissue that produces cerebrospinal fluid (CSF) and secretes it into the ventricular system. CSF flows from the lateral to the third ventricle, and then to the fourth ventricle through the cerebral aqueduct. Recent studies have uncovered new, active roles for this structure in the regulation of neural stem cell maintenance and differentiation into neurons.Zfp423,encoding a Kruppel-type zinc finger transcription factor essential for cerebellar development and mutated in rare cases of cerebellar vermis hypoplasia / Joubert syndrome and other ciliopathies, is expressed in the hindbrain roof plate (RP), from which the IV ventricle ChP arises, and in mesenchymal cells giving rise to the stroma and leptomeninges.Zfp423mutants display a marked reduction of the hindbrain ChP (hChP), which fails to express key markers of its secretory function and genes implicated in its development and maintenance (Lmx1a, Otx2). The mutant hChP displays a complete lack of multiciliated ependymal cells. A transcriptome analysis conducted at the earliest stages of hChP development and subsequent validations demonstrate that the mutant hChp displays a strong deregulation of pathways involved in early hindbrain patterning and multiciliated cell fate specification. Our results proposeZfp423as a master gene and one of the earliest known determinants of hChP development.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献