ZNF423 patient variants, truncations, and in-frame deletions in mice define an allele-dependent range of midline brain abnormalities

Author:

Deshpande OjasORCID,Lara Raquel Z.ORCID,Zhang Oliver R.ORCID,Concepcion Dorothy,Hamilton Bruce A.ORCID

Abstract

ABSTRACTInterpreting rare variants remains a challenge in personal genomics, especially for disorders with several causal genes and for genes that cause multiple disorders. ZNF423 encodes a transcriptional regulatory protein that intersects several developmental pathways. ZNF423 has been implicated in rare neurodevelopmental disorders, consistent with midline brain defects in Zfp423-mutant mice, but pathogenic potential of most patient variants remains uncertain. We engineered ~50 patient-derived and small deletion variants into the highly-conserved mouse ortholog and examined neuroanatomical measures for 791 littermate pairs. Three substitutions previously asserted pathogenic appeared benign, while a fourth was effectively null. Heterozygous premature termination codon (PTC) variants showed mild haploabnormality, consistent with loss-of-function intolerance inferred from human population data. In-frame deletions of specific zinc fingers showed mild to moderate abnormalities, as did low-expression variants. These results affirm the need for functional validation of rare variants in biological context and demonstrate cost-effective modeling of neuroanatomical abnormalities in mice.AUTHOR SUMMARYGene identification in rare disorders is typically supported by finding different mutations of the same gene in multiple families with the same disorder. However, causal evidence for any specific mutation found in one or a few related individuals is weaker, especially if the disorder can be caused by any of several genes and the functional effect of the mutation is not certain. Experimental models can be helpful in testing causal effects, but only to the extent that the model is validated to recapitulate one or more aspects of the disorder. We used CRISPR/Cas9-based genome engineering to create a wide range of mutations in mouse Zfp423, whose human cognate is implicated in neurodevelopmental disorders, especially cerebellar vermis hypoplasia and Joubert syndrome. This large collection of animal models shows that both reduced Zfp423 expression, including heterozygosity for loss-of-function mutations, and normally-expressed domain deletions, including specific zinc finger domains, produce measureable abnormalities in midline development. Despite this high level of validation, most patient-derived amino acid substitution variants tested do not produce measureable effects. The single exception is a substitution, H1277Y, that destroys a structural element in the last zinc finger domain and results in dramatic loss of steady-state Zfp423 protein level.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3