Leveraging molecular QTL to understand the genetic architecture of diseases and complex traits

Author:

Hormozdiari Farhad,Gazal Steven,Geijn Bryce van de,Finucane Hilary,Ju Chelsea J.-T.,Loh Po-Ru,Schoech Armin,Reshef Yakir,Liu Xuanyao,O’Connor Luke,Gusev Alexander,Eskin Eleazar,Price Alkes L.

Abstract

AbstractThere is increasing evidence that many GWAS risk loci are molecular QTL for gene ex-pression (eQTL), histone modification (hQTL), splicing (sQTL), and/or DNA methylation (meQTL). Here, we introduce a new set of functional annotations based on causal posterior prob-abilities (CPP) of fine-mapped molecular cis-QTL, using data from the GTEx and BLUEPRINT consortia. We show that these annotations are very strongly enriched for disease heritability across 41 independent diseases and complex traits (average N = 320K): 5.84x for GTEx eQTL, and 5.44x for eQTL, 4.27-4.28x for hQTL (H3K27ac and H3K4me1), 3.61x for sQTL and 2.81x for meQTL in BLUEPRINT (all P ≤ 1.39e-10), far higher than enrichments obtained using stan-dard functional annotations that include all significant molecular cis-QTL (1.17-1.80x). eQTL annotations that were obtained by meta-analyzing all 44 GTEx tissues generally performed best, but tissue-specific blood eQTL annotations produced stronger enrichments for autoimmune dis-eases and blood cell traits and tissue-specific brain eQTL annotations produced stronger enrich-ments for brain-related diseases and traits, despite high cis-genetic correlations of eQTL effect sizes across tissues. Notably, eQTL annotations restricted to loss-of-function intolerant genes from ExAC were even more strongly enriched for disease heritability (17.09x; vs. 5.84x for all genes; P = 4.90e-17 for difference). All molecular QTL except sQTL remained significantly enriched for disease heritability in a joint analysis conditioned on each other and on a broad set of functional annotations from previous studies, implying that each of these annotations is uniquely informative for disease and complex trait architectures.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3