Low-frequency variant functional architectures reveal strength of negative selection across coding and non-coding annotations

Author:

Gazal StevenORCID,Loh Po-RuORCID,Finucane Hilary K.ORCID,Ganna AndreaORCID,Schoech ArminORCID,Sunyaev ShamilORCID,Price Alkes L.ORCID

Abstract

AbstractCommon variant heritability is known to be concentrated in variants within cell-type-specific non-coding functional annotations, with a limited role for common coding variants. However, little is known about the functional distribution of low-frequency variant heritability. Here, we partitioned the heritability of both low-frequency (0.5% ≤ MAF < 5%) and common (MAF ≥ 5%) variants in 40 UK Biobank traits (average N = 363K) across a broad set of coding and non-coding functional annotations, employing an extension of stratified LD score regression to low-frequency variants that produces robust results in simulations. We determined that non-synonymous coding variants explain 17±1% of low-frequency variant heritability versus only 2.1±0.2% of common variant heritability , and that regions conserved in primates explain nearly half of (43±2%). Other annotations previously linked to negative selection, including non-synonymous variants with high PolyPhen-2 scores, non-synonymous variants in genes under strong selection, and low-LD variants, were also significantly more enriched for as compared to . Cell-type-specific non-coding annotations that were significantly enriched for of corresponding traits tended to be similarly enriched for for most traits, but more enriched for brain-related annotations and traits. For example, H3K4me3 marks in brain DPFC explain 57±12% of vs. 12±2% of for neuroticism, implicating the action of negative selection on low-frequency variants affecting gene regulation in the brain. Forward simulations confirmed that the ratio of low-frequency variant enrichment vs. common variant enrichment primarily depends on the mean selection coefficient of causal variants in the annotation, and can be used to predict the effect size variance of causal rare variants (MAF < 0.5%) in the annotation, informing their prioritization in whole-genome sequencing studies. Our results provide a deeper understanding of low-frequency variant functional architectures and guidelines for the design of association studies targeting functional classes of low-frequency and rare variants.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3