Abstract
AbstractTrehalose is an essential disaccharide for mycobacteria and a key constituent of several cell wall glycolipids with fundamental roles in pathogenesis. Mycobacteria possess two pathways for trehalose biosynthesis. However, only the OtsAB pathway was found to be essential inM. tuberculosis, with marked growth and virulence defects of OtsA mutants and strict essentiality of OtsB2. Herein, we report the first mycobacterial OtsA structures fromM. thermoresistibilein both apo and ligand-bound forms. Structural information reveals three key residues in the mechanism of substrate preference that were further confirmed by site-directed mutagenesis. Additionally, we identify 2-oxoglutarate and 2-phosphoglycerate as allosteric regulators of OtsA. The structural analysis in this work strongly contributed to define the mechanisms for feedback inhibition, show different conformational states of the enzyme and map a new allosteric site.
Publisher
Cold Spring Harbor Laboratory