Genetic Transformer: An Innovative Large Language Model Driven Approach for Rapid and Accurate Identification of Causative Variants in Rare Genetic Diseases

Author:

Liang Lungang,Chen YulanORCID,Wang Taifu,Jiang Dan,Jin Jishuo,Pang Yanmeng,Na Qin,Liu Qiang,Jiang Xiaosen,Dai Wentao,Tang Meifang,Du Yutao,Peng Dirong,Jin XinORCID,Zhao Lijian

Abstract

AbstractBackgroundIdentifying causative variants is crucial for the diagnosis of rare genetic diseases. Over the past two decades, the application of genome sequencing technologies in the field has significantly improved diagnostic outcomes. However, the complexity of data analysis and interpretation continues to limit the efficiency and accuracy of these applications. Various genotype and phenotype-driven filtering and prioritization strategies are used to generate a candidate list of variants for expert curation, with the final report variants determined through knowledge-intensive and labor-intensive expert review. Despite these efforts, the current methods fall short of meeting the growing demand for accurate and efficient diagnosis of rare disease. Recent developments in large language models (LLMs) suggest that LLMs possess the potential to augment or even supplant human labor in this context.MethodsIn this study, we have developed Genetic Transformer (GeneT), an innovative large language model (LLM) driven approach to accelerate identification of candidate causative variants for rare genetic disease. A comprehensive evaluation was conducted between the fine-tuned large language models and four phenotype-driven methods, including Xrare, Exomiser, PhenIX and PHIVE, alongside six pre-trained LLMs (Qwen1.5-0.5B, Qwen1.5-1.8B, Qwen1.5-4B, Mistral-7B, Meta-Llama-3-8B, Meta-Llama-3-70B). This evaluation focused on performance and hallucinations.ResultsGenetic Transformer (GeneT) as an innovative LLM-driven approach demonstrated outstanding performance on identification of candidate causative variants, identified the average number of candidate causative variants reduced from an average of 418 to 8, achieving recall rate of 99% in synthetic datasets. Application in real-world clinical setting demonstrated the potential for a 20-fold increase in processing speed, reducing the time required to analyze each sample from approximately 60 minutes to around 3 minutes. Concurrently, the recall rate has improved from 94.36% to 97.85%. An online analysis platform iGeneT was developed to integrate GeneT into the workflow of rare genetic disease analysis.ConclusionOur study represents the inaugural application of fine-tuned LLMs for identifying candidate causative variants, introducing GeneT as an innovative LLM-driven approach, demonstrating its superiority in both simulated data and real-world clinical setting. The study is unique in that it represents a paradigm shift in addressing the complexity of variant filtering and prioritization of whole exome or genome sequencing data, effectively resolving the challenge akin to finding a needle in a haystack.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3