DNA damage response signatures are associated with frontline chemotherapy response and routes of tumor evolution in extensive stage small cell lung cancer

Author:

Morris Benjamin B.ORCID,Heeke Simon,Xi Yuanxin,Diao Lixia,Wang Qi,Rocha Pedro,Arriola Edurne,Lee Myung Chang,Tyson Darren R.,Concannon Kyle,Ramkumar Kavya,Stewart C. Allison,Cardnell Robert J.,Wang Runsheng,Quaranta Vito,Wang Jing,Heymach John V.,Nabet Barzin Y.,Shames David S.,Gay Carl M.,Byers Lauren A.

Abstract

AbstractIntroductionA hallmark of small cell lung cancer (SCLC) is its recalcitrance to therapy. While most SCLCs respond to frontline therapy, resistance inevitably develops. Identifying phenotypes potentiating chemoresistance and immune evasion is a crucial unmet need. Previous reports have linked upregulation of the DNA damage response (DDR) machinery to chemoresistance and immune evasion across cancers. However, it is unknown if SCLCs exhibit distinct DDR phenotypes.MethodsTo study SCLC DDR phenotypes, we developed a new DDR gene analysis method and applied it to SCLC clinical samples,in vitro, andin vivomodel systems. We then investigated how DDR regulation is associated with SCLC biology, chemotherapy response, and tumor evolution following therapy.ResultsUsing multi-omic profiling, we demonstrate that SCLC tumors cluster into three DDR phenotypes with unique molecular features. Hallmarks of these DDR clusters include differential expression of DNA repair genes, increased replication stress, and heightened G2/M cell cycle arrest. SCLCs with elevated DDR phenotypes exhibit increased neuroendocrine features and decreased “inflamed” biomarkers, both within and across SCLC subtypes. Treatment naive DDR status identified SCLC patients with different responses to frontline chemotherapy. Tumors with initial DDR Intermediate and DDR High phenotypes demonstrated greater tendency for subtype switching and emergence of heterogeneous phenotypes following treatment.ConclusionsWe establish that SCLC can be classified into one of three distinct, clinically relevant DDR clusters. Our data demonstrates that DDR status plays a key role in shaping SCLC phenotypes, chemotherapy response, and patterns of tumor evolution. Future work targeting DDR specific phenotypes will be instrumental in improving patient outcomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3