Abstract
AbstractEpistasis, or interactions in which alleles at one locus modify the fitness effects of alleles at other loci, plays a fundamental role in genetics, protein evolution, and many other areas of biology. Epistasis is typically quantified by computing the deviation from the expected fitness under an additive or multiplicative model using one of several formulae. However, these formulae are not all equivalent. Importantly, one widely used formula – which we call thechimericformula – measures deviations from amultiplicativefitness model on anadditivescale, thus mixing two measurement scales. We show that for pairwise interactions, the chimeric formula yields a different magnitude, but the same sign (synergistic vs. antagonistic) of epistasis compared to the multiplicative formula that measures both fitness and deviations on a multiplicative scale. However, for higher-order interactions, we show that the chimeric formula can have both different magnitudeandsign compared to the multiplicative formula — thus confusing negative epistatic interactions with positive interactions, and vice versa. We resolve these inconsistencies by deriving fundamental connections between the different epistasis formulae and the parameters of themultivariate Bernoulli distribution. Our results demonstrate that the additive and multiplicative epistasis formulae are more mathematically sound than the chimeric formula. Moreover, we demonstrate that the mathematical issues with the chimeric epistasis formula lead to markedly different biological interpretations of real data. Analyzing multi-gene knockout data in yeast, multi-way drug interactions inE. coli, and deep mutational scanning (DMS) of several proteins, we find that 10 − 60% of higher-order interactions have a change in sign with the multiplicative or additive epistasis formula. These sign changes result in qualitatively different findings on functional divergence in the yeast genome, synergistic vs. antagonistic drug interactions, and and epistasis between protein mutations. In particular, in the yeast data, the more appropriate multiplicative formula identifies nearly 500 additional negative three-way interactions, thus extending the trigenic interaction network by 25%.
Publisher
Cold Spring Harbor Laboratory