Diversity and functional specialization of oyster immune cells uncovered by integrative single cell level investigations

Author:

de La Forest Divonne Sébastien,Pouzadoux Juliette,Romatif Océane,Montagnani Caroline,Mitta Guillaume,Destoumieux-Garzon Delphine,Gourbal BenjaminORCID,Charrière Guillaume M.,Vignal EmmanuelORCID

Abstract

AbstractMollusks are a major component of animal biodiversity and play a critical role in ecosystems and global food security. The Pacific oyster,Crassostrea (Magallana) gigas, is the most farmed bivalve mollusk in the world and is becoming a model species for invertebrate biology. Despite the extensive research on hemocytes, the immune cells of bivalves, their characterization remains elusive. Here we were able to extensively characterize the diverse hemocytes and identified at least seven functionally distinct cell types and three hematopoietic lineages. A combination of single-cell RNA sequencing, quantitative cytology, cell sorting, functional assays and pseudo-time analyses was used to deliver a comprehensive view of the distinct hemocyte types. This integrative analysis enabled us to reconcile molecular and cellular data and identify distinct cell types performing specialized immune functions, such as phagocytosis, reactive oxygen species production, copper accumulation, and expression of antimicrobial peptides. This study emphasized the need for more in depth studies of cellular immunity in mollusks and non-model invertebrates and set the ground for further comparative immunology studies at the cellular level.

Publisher

Cold Spring Harbor Laboratory

Reference62 articles.

1. The biomass distribution on Earth

2. B. Leicester Bayne , Biology of Oysters (Academic Press, 1st Edition., 2017)vol. 41.

3. Molecular Basis for Adaptation of Oysters to Stressful Marine Intertidal Environments;Annu. Rev. Anim. Biosci,2016

4. FAO, Global aquaculture production. Fisheries and aquaculture division (2023).

5. Infectious diseases in oyster aquaculture require a new integrated approach

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3