Establishing a co-culture aggregate of N-cycle bacteria to elucidate flocculation in biological wastewater treatment

Author:

Parret LaurensORCID,Simoens KennethORCID,Horemans BenjaminORCID,De Vrieze JoORCID,Smets IlseORCID

Abstract

ABSTRACTBiological flocculation is a complex phenomenon that is often treated as a black box. As a result, flocculation problems are usually remediated without knowledge of the exact causes. We show that it is feasible to exploit a model (N-cycle) consortium with reduced complexity to fundamentally study bioflocculation. Strong nitrifier microcolonies were formed during oxic/anoxic cycles in sequencing batch reactors, using alginate entrapment as a cell retention system. After release of these aggregates into suspension, macroclusters with flocs of the denitrifier were observed. These results suggest that a living model of a full-scale activated sludge floc can be built through the use of this bottom-up approach. By eliminating shifts in the microbial community, the applied experimental conditions have a more direct effect on the observations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3