Identifying Artifacts from Large Library Docking

Author:

Wu Yujin,Liu Fangyu,Glenn Isabella,Fonseca-Valencia Karla,Paris Lu,Xiong Yuyue,Jerome Steven V.,Brooks Charles L.,Shoichet Brian K.

Abstract

AbstractWhile large library docking has discovered potent ligands for multiple targets, as the libraries have grown, the very top of the hit-lists can become populated with artifacts that cheat our scoring functions. Though these cheating molecules are rare, they become ever-more dominant with library growth. Here, we investigate rescoring top-ranked molecules from docking screens with orthogonal methods to identify these artifacts, exploring implicit solvent models and absolute binding free energy perturbation (AB-FEP) as cross-filters. In retrospective studies, this approach deprioritized high-ranking non-binders for nine targets while leaving true ligands relatively unaffected. We tested the method prospectively against results from large library docking AmpC β-lactamase. From the very top of the docking hit lists, we prioritized 128 molecules for synthesis and experimental testing, a mixture of 39 molecules that rescoring flagged as likely cheaters and another 89 that were plausible true actives. None of the 39 predicted cheating compounds inhibited AmpC up to 200µM in enzyme assays, while 57% of the 89 plausible true actives did do so, with 19 of them inhibiting the enzyme with apparent Kivalues better than 50µM. As our libraries continue to grow, a strategy of catching docking artifacts by rescoring with orthogonal methods may find wide use in the field.Graphical TOC Entry

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3