Brief sleep disruption alters synaptic structures among hippocampal and neocortical somatostatin-expressing interneurons

Author:

Raven Frank,Medina Alexis Vega,Schmidt Kailynn,He Annie,Vankampen Anna A.,Balendran Vinodh,Aton Sara J.

Abstract

AbstractBrief sleep loss can disrupt cognition, including information processing in neocortex and hippocampus. Recent studies have identified alterations in synaptic structures of principal neurons within these circuits1–3. However, whilein vivorecording and bioinformatic data suggest that inhibitory interneurons are more strongly affected by sleep loss4–9, it is unclear how sleep and sleep deprivation affect interneurons’ synapses. Recent data suggest that activity among hippocampal somatostatin-expressing (SST+) interneurons is selectively increased by experimental sleep disruption8. We used Brainbow 3.010to label SST+ interneurons in the dorsal hippocampus, prefrontal cortex, and visual cortex of SST-CRE transgenic mice, then compared synaptic structures in labeled neurons after a 6-h period ofad libsleep, or gentle handling sleep deprivation (SD) starting at lights on. We find that dendritic spine density among SST+ interneurons in both hippocampus and neocortex was altered in a subregion-specific manner, with increased overall and thin spine density in CA1, decreased mushroom spine density in CA3, and decreased overall and stubby spine density in V1 after SD. Spine size also changed significantly after SD, with dramatic increases in spine volume and surface area in CA3, and small but significant decreases in CA1, PFC and V1. Together, our data suggest that the synaptic connectivity of SST+ interneurons is significantly altered, in a brain region-specific manner, by a few hours of sleep loss. Further, they suggest that sleep loss can disrupt cognition by altering the balance of excitation and inhibition in hippocampal and neocortical networks.Significance StatementChanges to the function of somatostatin-expressing (SST+) interneurons have been implicated in the etiology of psychiatric and neurological disorders in which both cognition and sleep behavior are affected. Here, we measure the effects of very brief experimental sleep deprivation on synaptic structures of SST+ interneurons in hippocampus and neocortex, in brain structures critical for sleep-dependent memory processing. We find that only six hours of sleep deprivation restructures SST+ interneurons’ dendritic spines, causing widespread and subregion-specific changes to spine density and spine size. These changes have the potential to dramatically alter excitatory-inhibitory balance across these brain networks, leading to cognitive disruptions commonly associated with sleep loss.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3