Spike inference from mouse spinal cord calcium imaging data

Author:

Rupprecht PeterORCID,Fan Wei,Sullivan Steve J.ORCID,Helmchen FritjofORCID,Sdrulla Andrei D.ORCID

Abstract

AbstractCalcium imaging is a key method to record the spiking activity of identified and genetically targeted neurons. However, the observed calcium signals are only an indirect readout of the underlying electrophysiological events (single spikes or bursts of spikes) and require dedicated algorithms to recover the spike rate. These algorithms for spike inference can be optimized using ground truth data from combined electrical and optical recordings, but it is not clear how such optimized algorithms perform on cell types and brain regions for which ground truth does not exist. Here, we use a state-of-the-art algorithm based on supervised deep learning (CASCADE) and a non-supervised algorithm based on non-negative deconvolution (OASIS) to test spike inference in spinal cord neurons. To enable these tests, we recorded specific ground truth from glutamatergic and GABAergic somatosensory neurons in the dorsal horn of spinal cord in mice of both sexes. We find that CASCADE and OASIS algorithms that were designed for cortical excitatory neurons generalize well to both spinal cord cell types. However, CASCADE models re-trained on our ground truth further improved the performance, resulting in a more accurate inference of spiking activity from spinal cord neurons. We openly provide re-trained models that can be flexibly applied to spinal cord data of variable noise levels and frame rates. Together, our ground-truth recordings and analyses provide a solid foundation for the interpretation of calcium imaging data from spinal cord and showcase how spike inference can generalize between different regions of the nervous system.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3