Transcriptomic Hallmarks of Mortality Reveal Universal and Specific Mechanisms of Aging, Chronic Disease, and Rejuvenation

Author:

Tyshkovskiy AlexanderORCID,Kholdina DariaORCID,Ying KejunORCID,Davitadze Maria,Molière AdrianORCID,Tongu YoshiyasuORCID,Kasahara TomokoORCID,Kats Leonid MORCID,Vladimirova AnastasiyaORCID,Moldakozhayev AlibekORCID,Liu HannaORCID,Zhang BohanORCID,Khasanova Uma,Moqri MahdiORCID,Van Raamsdonk Jeremy M.ORCID,Harrison David E.ORCID,Strong RandyORCID,Abe TakaakiORCID,Dmitriev Sergey E.ORCID,Gladyshev Vadim N.ORCID

Abstract

SUMMARYHealth is strongly affected by aging and lifespan-modulating interventions, but the molecular mechanisms of mortality regulation remain unclear. Here, we conducted an RNA-seq analysis of mice subjected to 20 compound treatments in the Interventions Testing Program (ITP). By integrating it with the data from over 4,000 rodent tissues representing aging and responses to genetic, pharmacological, and dietary interventions with established survival data, we developed robust multi-tissue transcriptomic biomarkers of mortality, capable of quantifying aging and change in lifespan in both short-lived and long-lived models. These tools were further extended to single-cell and human data, demonstrating common mechanisms of molecular aging across cell types and species. Via a network analysis, we identified and annotated 26 co-regulated modules of aging and longevity across tissues, and developed interpretable module-specific clocks that capture aging- and mortality-associated phenotypes of functional components, including, among others, inflammatory response, mitochondrial function, lipid metabolism, and extracellular matrix organization. These tools captured and characterized acceleration of biological age induced by progeria models and chronic diseases in rodents and humans. They also revealed rejuvenation induced by heterochronic parabiosis, early embryogenesis, and cellular reprogramming, highlighting universal signatures of mortality, shared across models of rejuvenation and age-related disease. They includedCdkn1aandLgals3, whose human plasma levels further demonstrated a strong association with all-cause mortality, disease incidence and risk factors, such as obesity and hypertension. Overall, this study uncovers molecular hallmarks of mammalian mortality shared across organs, cell types, species and models of disease and rejuvenation, exposing fundamental mechanisms of aging and longevity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3