Stochastic Modeling of Biophysical Responses to Perturbation

Author:

Chari TaraORCID,Gorin GennadyORCID,Pachter LiorORCID

Abstract

AbstractRecent advances in high-throughput, multi-condition experiments allow for genome-wide investigation of how perturbations affect transcription and translation in the cell across multiple biological entities or modalities, from chromatin and mRNA information to protein production and spatial morphology. This presents an unprecedented opportunity to unravel how the processes of DNA and RNA regulation direct cell fate determination and disease response. Most methods designed for analyzing large-scale perturbation data focus on the observational outcomes, e.g., expression; however, many potential transcriptional mechanisms, such as transcriptional bursting or splicing dynamics, can underlie these complex and noisy observations. In this analysis, we demonstrate how a stochastic biophysical modeling approach to interpreting high-throughout perturbation data enables deeper investigation of the ‘how’ behind such molecular measurements. Our approach takes advantage of modalities already present in data produced with current technologies, such as nascent and mature mRNA measurements, to illuminate transcriptional dynamics induced by perturbation, predict kinetic behaviors in new perturbation settings, and uncover novel populations of cells with distinct kinetic responses to perturbation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3