Author:
Norman Thomas M.,Horlbeck Max A.,Replogle Joseph M.,Ge Alex Y.,Xu Albert,Jost Marco,Gilbert Luke A.,Weissman Jonathan S.
Abstract
AbstractSynergistic interactions between gene functions drive cellular complexity. However, the combinatorial explosion of possible genetic interactions (GIs) has necessitated the use of scalar interaction readouts (e.g. growth) that conflate diverse outcomes. Here we present an analytical framework for interpreting manifolds constructed from high-dimensional interaction phenotypes. We applied this framework to rich phenotypes obtained by Perturb-seq (single-cell RNA-seq pooled CRISPR screens) profiling of strong GIs mined from a growth-based, gain-of-function GI map. Exploration of this manifold enabled ordering of regulatory pathways, principled classification of GIs (e.g. identifying true suppressors), and mechanistic elucidation of synthetic lethal interactions, including an unexpected synergy between CBL and CNN1 driving erythroid differentiation. Finally, we apply recommender system machine learning to predict interactions, facilitating exploration of vastly larger GI manifolds.One Sentence SummaryPrinciples and mechanisms of genetic interactions are revealed by rich phenotyping using single-cell RNA sequencing.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献