Accurate Predictions of Liquid-Liquid Phase Separating Proteins at Single Amino Acid Resolution

Author:

Monti Michele,Fiorentino Jonathan,Miltiadis-Vrachnos Dimitrios,Bini Giorgio,Cotrufo Tiziana,de Groot Natalia Sanchez,Armaos Alexandros,Tartaglia Gian GaetanoORCID

Abstract

AbstractLiquid-liquid phase separation (LLPS) is a molecular mechanism that leads to the formation of membraneless organelles inside the cell. Despite recent advances in the experimental probing and computational prediction of proteins involved in this process, the identification of the protein regions driving LLPS and the prediction of the effect of mutations on LLPS are lagging behind.Here, we introduce catGRANULE 2.0 ROBOT (R - Ribonucleoprotein, O - Organization, in B - Biocondensates, O - Organelle, T - Types), an advanced algorithm for predicting protein LLPS at single amino acid resolution. Integrating physico-chemical properties of the proteins and structural features derived from AlphaFold models, catGRANULE 2.0 ROBOT significantly surpasses traditional sequence-based and state-of-the-art structure-based methods in performance, achieving an Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.76 or higher. We present a comprehensive evaluation of the algorithm across multiple organisms and cellular components, demonstrating its effectiveness in predicting LLPS propensities at the single amino acid level and the impacts of mutations on LLPS. Our results are robustly supported by experimental validations, including immunofluorescence microscopy images from the Human Protein Atlas.catGRANULE 2.0 ROBOT’s potential in protein design and mutation control can improve our understanding of proteins’ propensity to form subcellular compartments and help develop strategies to influence biological processes through LLPS. catGRANULE 2.0 ROBOT is freely available athttps://tools.tartaglialab. com/catgranule2.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3