Semi-supervised learning while controlling the FDR with an application to tandem mass spectrometry analysis

Author:

Freestone Jack Andrew,Käll LukasORCID,Noble William StaffordORCID,Keich UriORCID

Abstract

Canonical procedures to control the false discovery rate (FDR) among the list of putative discoveries rely on our ability to compute informative p-values. Competition-based approach offers a fairly novel and increasingly popular alternative when computing such p-values is impractical. The popularity of this approach stems from its wide applicability: instead of computing p-values, which requires knowing the entire null distribution for each null hypothesis, a competition-based approach only requires a single draw from each such null distribution. This drawn example is known as a "decoy" in the mass spectrometry community (which was the first to adopt the competition approach) or as a "knockoff" in the statistics community. The decoy is competed with the original observation so that only the higher scoring of the two is retained. The number of decoy wins is subsequently used to estimate and control the FDR among the target wins. In this paper we offer a novel method to extend the competition-based approach to control the FDR while taking advantage of side information, i.e., additional features that can help us distinguish between correct and incorrect discoveries. Our motivation comes from the problem of peptide detection in tandem mass spectrometry proteomics data. Specifically, we recently showed that a popular mass spectrometry analysis software tool, Percolator, can apparently fail to control the FDR. We address this problem here by developing a general protocol called "RESET" that can take advantage of the additional features, such as the ones Percolator uses, while still theoretically and empirically controlling the FDR.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3