Lightway access to AlphaMissense data that demonstrates a balanced performance of this missense mutation predictor

Author:

Tordai H.ORCID,Torres O.ORCID,Csepi M.,Padányi R.ORCID,Lukács G. L.ORCID,Hegedűs T.ORCID

Abstract

AbstractSingle amino acid substitutions can profoundly affect protein folding, dynamics, and function, leading to potential pathological consequences. The ability to discern between benign and pathogenic substitutions is pivotal for therapeutic interventions and research directions. Given the limitations in experimental examination of these variants, AlphaMissense has emerged as a promising predictor of the pathogenicity of single nucleotide polymorphism variants. In our study, we assessed the efficacy of AlphaMissense across several protein groups, such as mitochondrial, housekeeping, transmembrane proteins, and specific proteins like CFTR, using ClinVar data for validation. Our comprehensive evaluation showed that AlphaMissense delivers outstanding performance, with MCC scores predominantly between 0.6 and 0.74. We observed low performance on the CFTR and disordered, membrane-interacting MemMoRF datasets. However, an enhanced performance with CFTR was shown when benchmarked against the CFTR2 database. Our results also emphasize that quality of AlphaFold’s predictions can seriously influence AlphaMissense predictions. Most importantly, AlphaMissense’s consistent capability in predicting pathogenicity across diverse protein groups, spanning both transmembrane and soluble domains was found. Moreover, the prediction of likely-pathogenic labels for IBS and CFTR coupling helix residues emphasizes AlphaMissense’s potential as a tool for pinpointing functionally significant sites. Additionally, to make AlphaMissense predictions more accessible, we have introduced a user-friendly web resource (https://alphamissense.hegelab.org) to enhance the utility of this valuable tool. Our insights into AlphaMissense’s capability, along with this online resource, underscore its potential to significantly aid both research and clinical applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3