Using computational approaches to enhance the interpretation of missense variants in the PAX6 gene

Author:

Andhika Nadya S.ORCID,Biswas SusmitoORCID,Hardcastle Claire,Green David J.,Ramsden Simon C.,Birney Ewan,Black Graeme C.ORCID,Sergouniotis Panagiotis I.ORCID

Abstract

AbstractThe PAX6 gene encodes a highly-conserved transcription factor involved in eye development. Heterozygous loss-of-function variants in PAX6 can cause a range of ophthalmic disorders including aniridia. A key molecular diagnostic challenge is that many PAX6 missense changes are presently classified as variants of uncertain significance. While computational tools can be used to assess the effect of genetic alterations, the accuracy of their predictions varies. Here, we evaluated and optimised the performance of computational prediction tools in relation to PAX6 missense variants. Through inspection of publicly available resources (including HGMD, ClinVar, LOVD and gnomAD), we identified 241 PAX6 missense variants that were used for model training and evaluation. The performance of ten commonly used computational tools was assessed and a threshold optimization approach was utilized to determine optimal cut-off values. Validation studies were subsequently undertaken using PAX6 variants from a local database. AlphaMissense, SIFT4G and REVEL emerged as the best-performing predictors; the optimized thresholds of these tools were 0.967, 0.025, and 0.772, respectively. Combining the prediction from these top-three tools resulted in lower performance compared to using AlphaMissense alone. Tailoring the use of computational tools by employing optimized thresholds specific to PAX6 can enhance algorithmic performance. Our findings have implications for PAX6 variant interpretation in clinical settings.

Funder

Wellcome Trust

DH | National Institute for Health Research

Fight for Sight UK

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Summer reading in EJHG;European Journal of Human Genetics;2024-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3