PAX6 mutations: genotype-phenotype correlations

Author:

Tzoulaki Ioanna,White Ian MS,Hanson Isabel M

Abstract

Abstract Background The PAX6 protein is a highly conserved transcriptional regulator that is important for normal ocular and neural development. In humans, heterozygous mutations of the PAX6 gene cause aniridia (absence of the iris) and related developmental eye diseases. PAX6 mutations are archived in the Human PAX6 Allelic Variant Database, which currently contains 309 records, 286 of which are mutations in patients with eye malformations. Results We examined the records in the Human PAX6 Allelic Variant Database and documented the frequency of different mutation types, the phenotypes associated with different mutation types, the contribution of CpG transitions to the PAX6 mutation spectrum, and the distribution of chain-terminating mutations in the open reading frame. Mutations that introduce a premature termination codon into the open reading frame are predominantly associated with aniridia; in contrast, non-aniridia phenotypes are typically associated with missense mutations. Four CpG dinucleotides in exons 8, 9, 10 and 11 are major mutation hotspots, and transitions at these CpG's account for over half of all nonsense mutations in the database. Truncating mutations are distributed throughout the PAX6 coding region, except for the last half of exon 12 and the coding part of exon 13, where they are completely absent. The absence of truncating mutations in the 3' part of the coding region is statistically significant and is consistent with the idea that nonsense-mediated decay acts on PAX6 mutant alleles. Conclusion The PAX6 Allelic Variant Database is a valuable resource for studying genotype-phenotype correlations. The consistent association of truncating mutations with the aniridia phenotype, and the distribution of truncating mutations in the PAX6 open reading frame, suggests that nonsense-mediated decay acts on PAX6 mutant alleles.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3