Biosynthesis- and Metabolomics-guided discovery of antimicrobial cyclopeptides against drug-resistant clinical isolates

Author:

Cheng Zhuo,He Bei-BeiORCID,Lei Kangfan,Gao Ying,Shi Yuqi,Zhong Zheng,Liu Hongyan,Liu Runze,Zhang Haili,Wu Song,Zhang Wenxuan,Tang XiaoyuORCID,Li Yong-XinORCID

Abstract

AbstractAntimicrobial resistance remains a significant global threat, contributing significantly to mortality rates worldwide. Ribosomally synthesized and post-translationally modified peptides (RiPPs) have emerged as a promising source of novel peptide antibiotics due to their diverse chemical structures. Here, we reported the discovery of new Avi(Me)Cys-containing cyclopeptide antibiotics through a synergistic approach that combines rule-based genome mining, automated metabolomic analysis, and heterologous expression. We first bioinformatically identified 1,172 RiPP biosynthetic gene clusters (BGCs) responsible for Avi(Me)Cys-containing cyclopeptides from a vast pool of over 50,000 bacterial genomes. Subsequently, we successfully established the connection between three newly identified BGCs and the synthesis of five new peptide antibiotics. Notably, massatide A displayed excellent activity against a spectrum of gram-positive pathogens, including drug-resistant clinical isolates like linezolid-resistantS. aureusand methicillin-resistantS. aureus, with a minimum inhibitory concentration (MIC) of 0.25 μg/mL. The remarkable performance of massatide A in an animal infection model, coupled with a low risk of resistance and favorable safety profile, positions it as a promising candidate for antibiotic development. Our study highlights the potential of Avi(Me)Cys-containing cyclopeptides in expanding the arsenal of antibiotics against multi-drug-resistant bacteria, offering promising drug leads in the ongoing battle against infectious diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3