RNA structure modulates Cas13 activity and enables mismatch detection

Author:

Kimchi OferORCID,Larsen Benjamin B.,Dunkley Owen R. S.,te Velthuis Aartjan J.W.ORCID,Myhrvold CameronORCID

Abstract

AbstractThe RNA-targeting CRISPR nuclease Cas13 has emerged as a powerful tool for applications ranging from nucleic acid detection to transcriptome engineering and RNA imaging1–6. Cas13 is activated by the hybridization of a CRISPR RNA (crRNA) to a complementary single-stranded RNA (ssRNA) protospacer in a target RNA1,7. Though Cas13 is not activated by double-stranded RNA (dsRNA)in vitro, it paradoxically demonstrates robust RNA targeting in environments where the vast majority of RNAs are highly structured2,8. Understanding Cas13’s mechanism of binding and activation will be key to improving its ability to detect and perturb RNA; however, the mechanism by which Cas13 binds structured RNAs remains unknown9. Here, we systematically probe the mechanism of LwaCas13a activation in response to RNA structure perturbations using a massively multiplexed screen. We find that there are two distinct sequence-independent modes by which secondary structure affects Cas13 activity: structure in the protospacer region competes with the crRNA and can be disrupted via a strand-displacement mechanism, while structure in the region 3’ to the protospacer has an allosteric inhibitory effect. We leverage the kinetic nature of the strand displacement process to improve Cas13-based RNA detection, enhancing mismatch discrimination by up to 50-fold and enabling sequence-agnostic mutation identification at low (<1%) allele frequencies. Our work sets a new standard for CRISPR-based nucleic acid detection and will enable intelligent and secondary-structure-guided target selection while also expanding the range of RNAs available for targeting with Cas13.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3